I. DATOS DEL PROGRAMA Y LA ASIGNATURA			
NOMBRE DEL	MAESTRÍA	EN CIENCIAS EN EL USO, MANEJO Y PRESERVACIÓN DE LOS RECURSOS	
PROGRAMA	NATURALE	S	
NOMBRE DE LA	Inferencia d	e múltiples modelos en crecimiento	
ASIGNATURA			
CLAVE	9514		

TIPO DE ASIGNATURA OBLIGATORIA OPTATIVA X	TIPO DE ASIGNATURA	OBLIGATORIA		OPTATIVA	Х
---	--------------------	-------------	--	----------	---

TIPO DE ASIGNATURA	TEÓRICA		PRÁCTICA		TEÓRICA-PRÁCTICA	Х
				_		
NÚMERO DE HORAS		64				
NÚMERO DE CRÉDITOS*		8				
TRIMESTRE EN EL QUE SE IMPARTIRÁ		enero	-abril			
FECHA DE ÚLTIMA ACTUALIZACIÓN		2025/	08/11			

^{*}Cada crédito equivale a ocho horas de clases teóricas, 16 horas de clases prácticas o 30 horas de trabajo de investigación.

RESPONSABLE DE LA ASIGNATURA	EUGENIO ALBERTO ARAGÓN NORIEGA	CLAVE SNI 120652
SUPLENTE DE LA ASIGNATURA	EDGAR ALCÁNTARA RAZO	NA
PROFESORES PARTICIPANTES	EUGENIO ALBERTO ARAGÓN NORIEGA	

I. DESCRIPCIÓN DEL CONTENIDO DEL PROGRAMA DEL CURSO O ASIGNATURA

A) OBJETIVO GENERAL

OBJETIVO GENERAL: Introducir al estudiante a la teoría y uso de la inferencia a partir de múltiples modelos sobre crecimiento individual y relativo, proporcionando al estudiante los principios básicos del análisis e interpretación de resultados.

B) DESCRIPCIÓN DEL CONTENIDO	
TEMAS Y SUBTEMAS	TIEMPO (Horas)
Tema I. Análisis de datos	8
Subtema I.1 Estimación de parámetros	1
Subtema I.2 Funciones objetivo. Construcción y bases teóricas	1
Subtema I.3 Funciones de densidad probabilística aplicadas a estimación de parámetros	1
Subtema I.4 Aplicación de un algoritmo SSQ	1
Subtema I.5 Algoritmo de distribución normal, lognormal	1

Subtema I.6 Estimación de la desviación estándar	1
Subtema I.7 Estimación de intervalos de confianza	2
Tema II. La inferencia a partir de múltiples modelos	6
Subtema II.1 Naturaleza del problema	2
Subtema II.2 Modelos generalizados	2
Subtema II.3 Seleccionando el mejor modelo	2
Tema III. Pruebas de bondad de ajuste	8
Subtema III.1 Alcances del enfoque clásico de R ²	2
Subtema III.2 Cálculo del valor de Akaike	2
Subtema III.3 Cálculo del valor Bayesiano	2
Subtema III.4 Estimación de tasas de verosimilitud	2
Tema IV. Modelos de crecimiento Individual	6
Subtema IV.1 Modelo de von Bertalanffy	1
Subtema IV.2 Modelo de Gompertz	1
Subtema IV.3 Modelo Logístico	1
Subtema IV.4 Modelo de Shnute	1
Subtema IV.5 Modelo de Tanaka	1
Subtema IV.6 Modelo de Richard	1
Tema V. Modelos de crecimiento Relativo	10
Subtema V.1 Modelo potencial	2
Subtema V.2 Modelo cúbico	2
Subtema V.3 Modelo de línea rota	2
Subtema V.4 Modelo cuadrático	2
Subtema V.5 Modelos de más de dos o más fases	2
Tema VI. Parametrización con varianza variable	8
Subtema VI.1 Crecimiento depensatorio	2
Subtema VI.2 crecimiento compensatorio	2
Subtema VI.3 Funciones de distribución mixta	2
Subtema VI.4 Función objetivo conjunta	2
Laboratorios	18
Tema I. Análisis de datos	3
Tema II. La inferencia a partir de múltiples modelos	3
Tema III. Pruebas de bondad de ajuste	3

Tema IV. Modelos de crecimiento Individual	3
Tema V. Modelos de crecimiento Relativo	3
Tema VI. Parametrización con varianza variable	3
TOTAL	64

II. BIBLIOGRAFÍA

Los libros listados son altamente recomendables como básicos para el desarrollo del curso. Las lecturas respectivas a artículos científicos serán dadas por el profesor del curso a lo largo del mismo.

Libros

- Burnham, K. P. and D. R. Anderson. 2002. Model Selection and Multi-model Inference: A Practical Information-theoretic Approach. 2nd ed. New York: Springer.
- Haddon, M., 2001. Modeling and quantitative methods in fisheries. Chapman-Hall. Florida.
- Hilborn, R., Mangel, M., 1997. The ecological detective. Confronting models with data. Monographs in population biology. Princeton Academic Press. New Jersey.
- Hilborn, R., Walters, C., 1992. Quantitative fisheries stock assessment. Choice, dynamics and uncertainty. Chapman-Hall. New York.
- Neter, J., Kutner, M.H., Wasserman, W., Nachtschien, J., 1996. Applied linear statistical models. McGraw-Hill/Irwin. Chicago, III.
- Quinn II, T., Deriso, R., 1999. Quantitative fish dynamics. Oxford University Press. Oxford.
- Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Fisheries Research Board of Canada Bulletin 191.

Artículos

- Aragón-Noriega, E.A., E. Alcántara-Razo, J. G. Padilla-Serrato, G. Rodríguez-Domínguez & S. G. Castillo-Vargasmachuca. 2019. Morphological notes on Pinnaxodes gigas Green, 1992 (Brachyura, Pinnotheridae) emphasizing on length-weight relationship under multi-model approach. Crustaceana 92(9): 1081-1097
- Aragón-Noriega EA (2014) Modelando el crecimiento individual de la corvina golfina, Cynoscion othonopterus (Pisces: Sciaenidae), con el enfoque multimodelo. Rev. Cien. Mar. 40(2): 149–161.
- Aragón-Noriega EA, Alcántara-Razo E, Valenzuela-Quiñones W, Rodríguez-Quiroz G (2015) Multi-model inference for growth parameter estimation of the Bigeye Croaker Micropogonias megalops in the upper Gulf of California. Rev. Biol. Mar. Oceanogr. 50(1): 25-38.
- Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Phil. Trans. R. Soc. B. 115: 513-583.
- Katsanevakis S (2006) Modelling fish growth: Model selection, multi-model inference and model selection uncertainty. Fish. Res. 81: 229–235.
- Katsanevakis S, Maravelias D (2008) Modelling fish growth: Multimodel inference as a better alternative to a priori using the von Bertalanffy equation. Fish Fish. 9: 178–187.

Schnute J (1981) A versatile growth model with statistically stable parameters. Can. J. Fish. Aquat. Sci. 38: 1128–1140.

Rodríguez-Domínguez, G., S.G. Castillo-Vargasmachuca, R. Pérez-González, E.A. Aragón-Noriega. 2018. Allometry in Callinectes bellicosus (Stimpson, 1859) (Decapoda: Brachyura: Portunidae): single-power model versus multi-model approach. Journal of Crustacean Biology 38(5): 574-578 von Bertalanffy L (1938) A quantitative theory of organic growth. Hum. Biol. 10(2): 181-213

Referencias selectas cuya publicación sea menor a un año para el trimestre en que se imparta el curso.

III. PROCEDIMIENTO O INSTRUMENTOS DE EVALUACIÓN

Actividades de aprendizaje

Actividades de aprendizaje

El sistema de aprendizaje se basará en las clases teóricas y en el desarrollo del trabajo práctico en el laboratorio, así como la consulta bibliográfica de libros, de artículos científicos de actualidad, consultas y acceso a recursos en Internet. Uso de equipo de cómputo y software especializado. Uso del área del laboratorio especializado en pesquerías para el desarrollo de prácticas.

Evaluación

La evaluación se sustentará en la participación del estudiante en las diferentes actividades requeridas para completar el curso. Habrá 2 exámenes parciales. Cada estudiante entregará un trabajo final relacionado con un caso de estudio. Los reportes de laboratorio consistirán en entregas por escrito de cada práctica realizada.

Exámenes: 40%

Participación (tareas, prácticas): 30 % Reporte de un estudio de caso: 30%

